

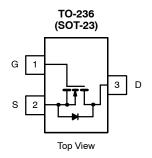
N-Channel 60-V (D-S) MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	$r_{DS(on)}\left(\Omega\right)$	I _D (mA)			
60	3 @ V _{GS} = 10 V	240			

FEATURES

Low On-Resistance: 3 Ω
Low Threshold: 2 V (typ)
Low Input Capacitance: 25 pF

• Fast Switching Speed: 7.5 ns


• Low Input and Output Leakage

BENEFITS

- Low Offset Voltage
- Low-Voltage Operation
- Easily Driven Without Buffer
- High-Speed Circuits
- Low Error Voltage

APPLICATIONS

- Direct Logic-Level Interface: TTL/CMOS
- Drivers: Relays, Solenoids, Lamps, Hammers, Display, Memories, Transistors, etc.
- Battery Operated Systems
- Solid-State Relays

Ordering Information: 2N7002E-T1

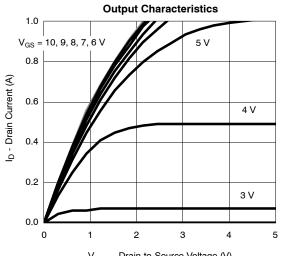
Marking Code: 7Ew/
E = Part Number Code for 2N7002E
w = Week Code
/ = Lot Traceability

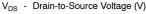
ABSOLUTE MAXIMUM RATINGS (T _A = 25°C UNLESS OTHERWISE NOTED)									
Parameter		Symbol	Limit	Unit					
Drain-Source Voltage		V _{DS}	60	V					
Gate-Source Voltage		V _{GS}	±20	'					
Oction of Desir Owner (T. 1500O)	T _A = 25°C		240	mA					
Continuous Drain Current (T _J = 150°C)	T _A = 70°C	- I'D -	190						
Pulsed Drain Current ^a		I _{DM}	1300						
D	T _A = 25°C	5	0.35	w					
Power Dissipation	T _A = 70°C	P _D	0.22						
Thermal Resistance, Junction-to-Ambient		R _{thJA}	357	°C/W					
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-55 to 150	°C						

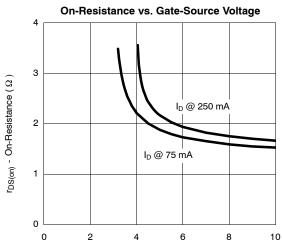
Notes

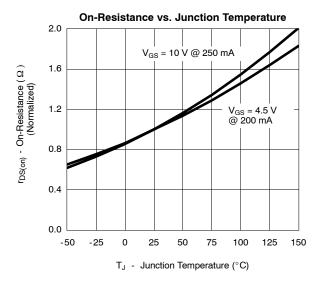
a. Pulse width limited by maximum junction temperature.

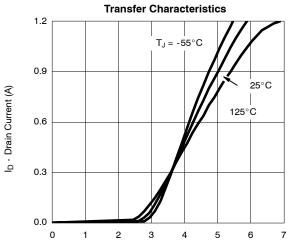
Vishay Siliconix

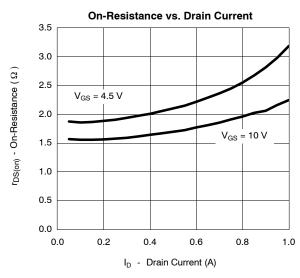

Parameter	Symbol	Test Conditions	Limits			
			Min	Typ ^a	Max	Unit
Static						
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 10 μA	60	68		
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1	2	2.5	V
Gate-Body Leakage	I _{GSS}	V_{DS} = 0 V, V_{GS} = \pm 15 V			±10	nA
Zero Gate Voltage Drain Current	l _{DSS} -	V _{DS} = 60 V, V _{GS} = 0 V			1	μΑ
		$V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}, T_{C} = 125^{\circ}\text{C}$			500	
On-State Drain Current ^b		$V_{GS} = 10 \ V, V_{DS} = 7.5 \ V$	800	1300		mA
	I _{D(on)}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 10 \text{ V}$	500	700		
Drain-Source On-Resistance ^b	r _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 250 \text{ mA}$		1.2	3	Ω
		V_{GS} = 4.5 V, I_D = 200 mA		1.8	4	
Forward Transconductanceb	9fs	$V_{DS} = 15 \text{ V}, I_D = 200 \text{ mA}$		600		mS
Diode Forward Voltage	V _{SD}	$I_S = 200 \text{ mA}, V_{GS} = 0 \text{ V}$		0.85	1.2	V
Dynamic ^a	-					
Total Gate Charge	Qg			0.4	0.6	nC
Gate-Source Charge	Q _{gs}	$V_{DS} = 10 \text{ V}, V_{GS} = 4.5 \text{ V}$ In $\cong 250 \text{ mA}$		0.06		
Gate-Drain Charge	Q _{gd}			0.06		
Input Capacitance	C _{iss}			21		pF
Output Capacitance	C _{oss}	$V_{DS} = 5 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		7		
Reverse Transfer Capacitance	C _{rss}			2.5		
Switching ^{a, c}						
Turn-On Time	t _{on}	$V_{DD} = 10 \text{ V}, R_L = 40 \Omega$ $I_D \cong 250 \text{ mA}, V_{GEN} = 10 \text{ V}$ $R_G = 10 \Omega$		13	20	ns
Turn-Off Time	t _{off}			18	25	

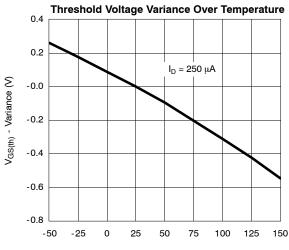

Notes
a. For DESIGN AID ONLY, not subject to production testing.
b. Pulse test: PW ≤ 300 μs duty cycle ≤ 2%.
c. Switching time is essentially independent of operating temperature.



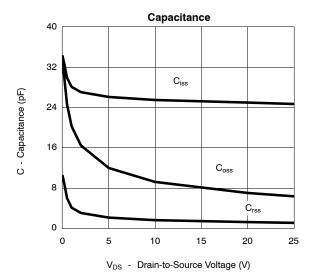

TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

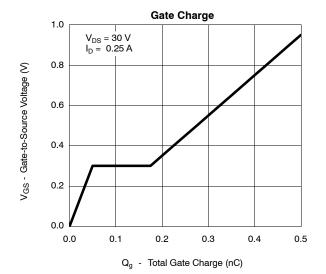


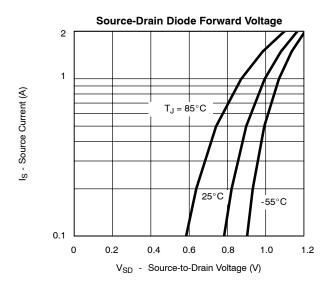



 V_{GS} - Gate-to-Source Voltage (V)

V_{GS} - Gate-to-Source Voltage (V)




 $T_J\,$ - $\,$ Junction Temperature (°C)


Vishay Siliconix

TYPICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ UNLESS OTHERWISE NOTED)

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com